Modeling the Dynamics of an American Football and the Stability Due to Spin

Author:

Dzielski John1,Blackburn Mark2

Affiliation:

1. Stevens Institute of Technology Department of Civil, Environmental, and Ocean Engineering, , Hoboken, NJ 07030

2. Systems Engineering Research Center, Stevens Institute of Technology , Hoboken, NJ 07030

Abstract

Abstract This paper develops a mathematical model describing the motion through the air of an American football. The model is based on established equations used to describe spinning projectiles. While the equations are applicable to general motions, the emphasis of the paper is on the spiral pass and punt. Separate sections introduce formulas for the forces and moments understood to act on spun projectiles. The discussion of each force and moment includes an assessment of how well available experimental data characterizes the force or moment for an American football. For each force or moment, there is a description of how it affects the motion and trajectory. While the equations are valid for arbitrary motions, the available aerodynamic data is not. In parallel with the derivation of the nonlinear mathematical model, a linearized dynamics model is developed. The linearized model is used to help explain the behavior of the nonlinear model and to provide insight into the underlying physics. The linearized model is also used to derive a relationship between linear and angular velocity that ensures that the gyroscopic motion of a football is stable. The paper provides physical insights into what causes the apparent “wobble” of a spiral pass and what the character of the wobble says about the quality of the pass. Among the physical insights provided are the reason some passes have a rapid wobble and some slow, why a pass exhibits a lateral swerve, and why the Magnus effect may be neglected. The results are applicable to rugby footballs.

Publisher

ASME International

Reference13 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3