A Phenomenological Model for Turbulent Heat Flux in High-Speed Flows With Shock-Induced Flow Separation

Author:

Pathak Utkarsh1,Roy Subhajit1,Sinha Krishnendu2

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

2. Professor Department of Aerospace Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India

Abstract

High-speed flows with shock waves impinging on turbulent boundary layers pose severe challenge to current computational methods and models. Specifically, the peak wall heat flux is grossly overpredicted by Reynolds-averaged Navier–Stokes (RANS) simulations using conventional turbulence models. This is because of the constant Prandtl number assumption, which fails in the presence of strong adverse pressure gradient (APG) of the shock waves. Experimental data suggest a reduction of the turbulent Prandtl number in boundary layers subjected to APG. We use a phenomenological approach to develop an algebraic model based on the available data and cast it in a form that can be used in high-speed flows with shock-induced flow separation. The shock-unsteadiness (SU) k–ω model is used as the baseline, since it gives good prediction of flow separation and the regions of APG. The new model gives marked improvement in the peak heat flux prediction near the reattachment point. The formulation is applicable to both attached and separated flows. Additionally, the simplicity of the formulation makes it easily implementable in existing numerical codes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3