Numerical Analysis on the Impact of Interstage Flow Addition in a High-Pressure Steam Turbine

Author:

Kang Soo Young1,Lee Jeong Jin2,Kim Tong Seop3,Park Seong Jin4,Hong Gi Won5

Affiliation:

1. Industrial Science and Technology Research Institute, Inha University, Incheon 22212, Korea e-mail:

2. Graduate School Inha University, Incheon 22212, Korea e-mail:

3. Mem. ASME Department of Mechanical Engineering, Inha University, Incheon 22212, Korea e-mail:

4. Turbine/Generator Performance Team, Doosan Heavy Industries & Construction, Changwon 51711, Korea e-mail:

5. Gas Turbine Development Team, Doosan Heavy Industries & Construction, Changwon 51711, Korea e-mail:

Abstract

This study analyzes the fluid dynamic characteristics of an ultrasupercritical (USC) high-pressure turbine with additional steam supplied through an overload valve between the second and third stages. The mixing between the main and admission flows causes complex flow phenomena such as swirl and changes of velocity vectors of the main flow. This causes a pressure drop between the second-stage outlet and third-stage inlet, which could potentially affect the performance of the turbine. First, a single-passage computational analysis, which is usually preferred in predicting the performance of multistage turbomachines, was performed using a simple model of an admission flow path and a single passage (SP) for the second and third stages of the turbine. However, the actual flow in the overload valve is supplied through the admission flow path, which has the shape of a casing that circumferentially surrounds the turbine, after flowing in two directions perpendicular to the turbine axis. This necessitates full-passage computational analyses of the two stages and the flow paths of the admission flow. To achieve this, we implemented a full three-dimensional (3D) geometric model of the admission flow path and conducted a full-passage computational analysis for all the flow paths, including those of the second and third stages of the turbine. The focus of analysis was on the pressure drop due to the admission flow. The results of the single and full-passage analyses were compared, and the effects of two different methods were analyzed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3