Pelletization of Refuse-Derived Fuel Fluff to Produce High Quality Feedstock

Author:

Sprenger Charley J.1,Tabil Lope G.1,Soleimani Majid1,Agnew Joy2,Harrison Amie3

Affiliation:

1. Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada e-mail:

2. Prairie Agricultural Machinery Institute, 2215 8th Avenue, Humboldt, SK S0K 2A0, Canada

3. Prairie Agricultural Machinery Institute, 2215 8th Avenue, Humboldt, SK S0K 2A0, Canada e-mail:

Abstract

Municipal solid waste (MSW) may be a suitable feedstock for thermochemical conversion. Current technologies process the MSW into refuse-derived fuel (RDF) fluff before conversion. Bench- and pilot-scale densification trials were conducted to determine the parameters required to produce a high quality feedstock from the MSW-RDF material in pellet form. The RDF was densified, as well as the biodegradable (paper and wood) fraction of the RDF stream to compare quality of pellets for the two material compositions. A single pelleting trial was conducted to examine the compaction parameters that would produce high quality pellets: sample material, grind size, moisture content, temperature, and pelleting pressure. It was determined that quality pellets, for both materials, were formed at a grind size of 6.35 mm at 16% moisture under pelleting conditions of 90 °C and 4000 N applied load. Pilot-scale pelleting was then completed to emulate industrial pelleting process utilizing the parameters from the single pelleting trials that were deemed to produce quality pellets. All of the samples produced durable pellets (88–94%), with the ash content around 20%. A techno-economic feasibility study determined that 6.35 mm diameter pellets could be produced for an average cost of $38/Mg, although the aggressive process of the size reduction required indicates that it may not be a technically feasible option.

Funder

BioFuelNet Canada

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3