Prediction of Centrifugal Slurry Pump Head Reduction: An Artificial Neural Networks Approach

Author:

Engin Tahsin1,Kurt Akif2

Affiliation:

1. Faculty of Engineering, Department of Mechanical Engineering, University of Sakarya, 54187 Sakarya, Turkey

2. Faculty of Engineering, Department of Industrial Engineering, University of Sakarya, 54187 Sakarya, Turkey

Abstract

The feasibility of using artificial neural networks (ANN) in the prediction of head reduction of centrifugal pumps handling slurries is examined. An ANN model is proposed and compared with the empirical correlation given by the present authors earlier. The comparison showed that the ANN could successfully be used for the prediction of head reductions of centrifugal slurry pumps. The mean deviation between predicted and experimental values is 5.86% which is reasonable for slurry handling processes.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

1. Vocadlo, J. J., Koo, J. K., and Prang, A. J., 1974, “Performance of Centrifugal Pumps in Slurry Services,” Proc. Hydrotransport-3, Paper J2, BHRA Fluid Engineering, pp. 17–32.

2. Burgess, K. E., and Reizes, A., 1976, “The Effect of Sizing, Specific Gravity and Concentration on the Performance of Centrifugal Pumps,” Proc. Inst. Mech. Eng., 190-36/76, pp. 391–399.

3. Cave, I., 1976, “Effects of Suspended Solids on the Performance of Centrifugal Pumps,” Proc. Hydrotransport-4, Paper H3, BHRA Fluid Engineering, pp. 35–52.

4. Sellgren, A., 1979, “Performance of Centrifugal Pumps When Pumping Ores and Industrial Minerals,” Proc. Hydrotransport-6, Paper G1, BHRA Fluid Engineering, pp. 291–304.

5. Gahlot, V. K., Seshadri, V., and Malhotra, R. C., 1992, “Effect of Density, Size Distribution, and Concentration of Solids on the Characteristics of Centrifugal Pumps,” ASME J. Fluids Eng., 114, pp. 386–389.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3