Theoretical Study of Crack-Tip Singularity Fields in China

Author:

Hwang K. C.1,Yu S. W.1,Yang W.1

Affiliation:

1. Tsinghua University, Beijing 100084, China

Abstract

Crack-tip singularity studies play a dominant role in various aspects concerning fracture and fracture mechanics. Significant advances have been made by Chinese scholars engaged in this field. A systematic, but by no means conclusive, review is attempted here to outline their major progress and to guide the international reader to obtain an access to a portion of fracture research data contributed from Chinese literature. Theoretical framework on crack-tip singularity expansion, classification of the governing differential equations, and the contiguity conditions crucial to the asymptotic assembly are discussed briefly at the beginning part of the review. Attention is then focused on various particular cases in stationary cracks, quasistatically growing cracks, and dynamically propagating cracks. A great number of solutions concerning the above-mentioned crack status with respect to different nonlinear material prescriptions are reviewed. Preliminary studies of the three-dimensional effect on crack-tip singularity fields (most have been pursued for elastic material) as well as the interplay of damage during the process of crack separation have also been carried out actively in China. Some typical results are cited here to give insights into research in these two aspects. The applications of crack-tip singularity study are highlighted by the establishment of theoretical resistance curves based on singularity field calculations. Experimental verifications of those theoretically derived curves as well as their employment in structure integrity assessment are described.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3