Metric-Based Meta-Learning for Cross-Domain Few-Shot Identification of Welding Defect

Author:

Xie Tingli1,Huang Xufeng2,Choi Seung-Kyum1

Affiliation:

1. Georgia Institute of Technology George W. Woodruff School of Mechanical Engineering, , Atlanta, GA 30332

2. Huazhong University of Science & Technology School of Aerospace Engineering, , Wuhan 430074 , China

Abstract

Abstract With the development of deep learning and information technologies, intelligent welding systems have been further developed, which achieve satisfactory identification of defective welds. However, the lack of labeled samples and complex working conditions can hinder the improvement of identification models. This paper explores a novel method based on metric-based meta-learning for the classification of welding defects with cross-domain few-shot (CDFS) problems. First, an embedding module using convolutional neural network (CNN) is applied to perform feature extraction and generate prototypes. The embedding module only contains one input layer, multiple convolutions, max-pooling operators, and batch normalization layers, which has the advantages of low computational cost and high generalization of images. Then the prototypical module using a prototypical network (PN) is proposed to reduce the influence of domain-shift caused by different materials or measurements using the representations in embedding space, which can improve the performance of few-shot welding defects identification. The proposed approach is verified on real welding defects under different welding conditions from the Camera-Welds dataset. For the K-shot classification on different tasks, the proposed method achieves the highest average testing accuracy compared to the existing methods. The results show the proposed method outperforms the model-based meta-learning (MAML) and transfer-learning method.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3