Ab Initio Study of Iodine-Doped Carbon Nanotube Conductors

Author:

Li Yangchuan1,Fahrenthold Eric1

Affiliation:

1. Department of Mechanical Engineering, University of Texas, Austin, TX 78712 e-mail:

Abstract

The widespread use of copper in power and data cabling for aircraft, ships, and ground vehicles imposes significant mass penalties and limits cable ampacity. Experimental research has suggested that iodine-doped carbon nanotubes (CNTs) can serve as energy efficient replacements for copper in mass sensitive cabling applications. The high computational costs of ab initio modeling have limited complimentary modeling research on the development of high specific conductance materials. In recent research, the authors have applied two modeling assumptions, single zeta basis sets and approximate geometric models of the CNT junction structures, to allow an order of magnitude increase in the atom count used to model iodine-doped CNT conductors. This permits the ab initio study of dopant concentration and dopant distribution effects, and the development of a fully quantum based nanowire model which may be compared directly with the results of macroscale experiments. The accuracy of the modeling assumptions is supported by comparisons of ballistic conductance calculations with known quantum solutions and by comparison of the nanowire performance predictions with published experimental data. The validated formulation offers important insights on dopant distribution effects and conduction mechanisms not amenable to direct experimental measurement.

Funder

Office of Naval Research Global

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3