Computational Analysis of Fractional Liénard's Equation With Exponential Memory

Author:

Singh Jagdev12,Alshehri Ahmed M.3,Sushila 4,Kumar Devendra5

Affiliation:

1. Department of Mathematics, JECRC University , Jaipur 303905, Rajasthan, India ; , Jeddah 21589, Saudi Arabia

2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Sciences, King Abdulaziz University , Jaipur 303905, Rajasthan, India ; , Jeddah 21589, Saudi Arabia

3. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Sciences, King Abdulaziz University , Jeddah 21589, Saudi Arabia

4. Department of Physics, Vivekananda Global University , Jaipur 302033, Rajasthan, India

5. Department of Mathematics, University of Rajasthan , Jaipur 302004, Rajasthan, India

Abstract

AbstractThe fractional model of Liénard's equations is very useful in the study of oscillating circuits. The main aim of this article is to investigate a fractional extension of Liénard's equation by using a fractional operator with exponential kernel. A user friendly analytical algorithm is suggested to obtain the solutions of fractional model of Liénard's equation. The considered computational technique is a combination of q-homotopy analysis method and an integral transform approach. The outcomes of the investigation presented in graphical and tabular forms, which reveal that the suggested computational scheme is very accurate and useful for handling such type of fractional order nonlinear mathematical models.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference28 articles.

1. Etude Des Oscillations Entretenues;Rev. Gén. Electr.,1928

2. Explicit Exact Solutions for the Lienard Equation and Its Applications;Phys. Lett. A,1995

3. On Explicit Exact Solutions for the Lienard Equation and Its Applications;Phys. Lett. A,2002

4. A Numerical Implementation of the Variational Iteration Method for the Lienard Equation;World J. Modell. Simul.,2008

5. Exact and Numerical Solution of Lienard's Equation by the Variational Homotopy Perturbation Method;J. Inf. Comput. Sci.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3