Affiliation:
1. Duke University Department of Mechanical Engineering and Materials Science, , Durham, NC 27708
Abstract
AbstractThe results of an experimental study on the buckling of a vertically cantilevered plate under corner twisting forces are reported. In this configuration, an interesting and somewhat counter-intuitive behavior is observed in which a laterally loaded slender panel exhibits a subtle instability characterized by nonlinear out-of-plane corner deflections. This is one of the few studies in the literature that investigates the buckling of cantilevered plates and appears to be the only experimental study of buckling under twisting loads, i.e., loading the plate with point loads at the free corners and in opposite directions. This paper discusses the practical aspects of experimental verification and methodology and evaluates the effect of the plate aspect ratio (AR) on the nondimensional buckling load in this configuration. In addition, experimental results are compared to finite element analysis (FEA) simulations performed on accessible software. There is generally good agreement between the experiment and the finite element simulation for the change of buckling load with plate aspect ratio. The nondimensional buckling load appears to decrease asymptotically with increasing aspect ratio, though the correlation between experiment and computation is less consistent as aspect ratio increases due to experimental and computational limitations.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics