Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade

Author:

Papa M.1,Goldstein R. J.2,Gori F.1

Affiliation:

1. Department of Mechanical Engineering, University of Rome ‘Tor Vergata,’ Rome, Italy

2. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

Abstract

An experimental investigation has been performed to measure average and local mass transfer coefficients on the tip of a gas turbine blade using the naphthalene sublimation technique. The heat/mass transfer analogy can be applied to obtain heat transfer coefficients from the measured mass transfer data. Flow visualization on the tip surface is provided using an oil dot technique. Two different tip geometries are considered: a squealer tip and a winglet-squealer tip having a winglet on the pressure side and a squealer on the suction side of the blade. Measurements have been taken at tip clearance levels ranging from 0.6 to 3.6% of actual chord. The exit Reynolds number based on actual chord is approximately 7.2×105 for all measurements. Flow visualization shows impingement and recirculation regions on the blade tip surface, providing an interpretation of the mass transfer distributions and offering insight into the fluid dynamics within the gap. For both tip geometries the tip clearance level has a significant effect on the mass transfer distribution. The squealer tip has a higher average mass transfer that sensibly decreases with gap level, whereas a more limited variation with gap level is observed for the average mass transfer from the winglet-squealer tip.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3