Metastable Liquid Cavitation Control (With Memory) Apparatus, Methodology, and Results: For Radiation Detection, Reactor Safety, and Other Industrial Applications

Author:

Taleyarkhan Rusi P.1,Webster Jeffrey A.2,Sansone Anthony2,Archambault Brian C.3,Reames Randall2,West Colin D.4

Affiliation:

1. College of Engineering, Purdue University, 400 Central Drive, W. Lafayette, IN 47907 e-mail: ;

2. College of Engineering, Purdue University, 400 Central Drive, W. Lafayette, IN 47907 e-mail:

3. Technology and Production, Sagamore Adams Laboratories, LLC, 3601 Sagamore Parkway, Suite L, Lafayette, IN 47904 e-mail:

4. University of Tennessee, 242 Joel Road, Oliver Springs, TN 37830 e-mail:

Abstract

We present a method to simultaneously pressurize fluid filled containers from outside and within, results of experiments with temporary 2 h of fluid precompression followed by overpressure removal before testing for cavitation strength and sensitivity to neutron radiation of multi-mL quantities of widely used unfiltered and undegassed liquids, such as water, ethanol, and dodecane (a surrogate jet fuel), enclosed within containers using glass, epoxy, and steel. We found that in contrast to prior methods involving laborious degassing and purification, a straightforward one-step approach using only a modest 2 h precompression treatment at a pressure of 0.7+ MPa enabled us, reproducibly, to reach directly the highest attainable “negative” (subvacuum) pressures attainable in our apparatus (−0.7  MPa)—enabling efficient sensitivity to neutron-type radiation. Cavitation strength results are explained on theoretical grounds. However, surprisingly using the technique of this paper, the 2-h precompressed (unfiltered, undegassed) fluid also retained memory of this property, after the overpressure was removed, even 3 months later—thereby suggesting that active cavitation nuclei suppression can be extended to long periods of time. Successful results for cavitation suppression (in the absence of ionizing radiation) through −0.7  MPa were also attainable for fluids in simultaneous contact with a combination of glass, steel, and epoxy surfaces. The relative importance of cavitation strength retention at liquid–wall interfaces versus within the bulk of the fluids is reported along with implications for high-efficiency nuclear particle detection and spectroscopy, and nuclear fission water reactor safety thermal-hydraulic assessments for blowdown transients.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3