Sensitivity of General Compound Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters

Author:

Guo Yichao1,Parker Robert G.2

Affiliation:

1. Department of Mechanical Engineering, Ohio State University, 201 West 19th Avenue, Columbus OH 43210

2. State Key Lab for Mechanical Systems and Vibration, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 200240, China

Abstract

Abstract This paper studies the sensitivity of general compound planetary gear natural frequencies and vibration modes to inertia and stiffness parameters. The model admits planetary gears having any combination of stepped-planet, meshed-planet, and multiple stage arrangements. Eigensensitivities in terms of eigenvalue and eigenvector derivatives are analytically derived for both tuned (i.e., cyclically symmetric) and mistuned systems. The results are expressed in compact closed-form formulas. The well-defined modal properties of general compound planetary gears simplify the expressions of eigenvalue sensitivities to ones that are proportional to modal strain/kinetic energies. Inspection of the modal strain/kinetic energy distribution plots provides an effective way to quantitatively and qualitatively determine the parameters that have the largest impact on a certain mode. For parameter perturbations that preserve the system symmetry, the structured modal properties imply that the modes of the same type are independent of the same group of system parameters. Parameter mistuning, with a few exceptions, splits a degenerate natural frequency of the unperturbed system into two frequencies; one frequency keeps its original value and retains its well-defined modal properties, while the other frequency changes and its associated mode lose its structured modal properties.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3