Complexity Analysis Using Graph Models for Conflict Resolution for Autonomous Ships in Complex Situations

Author:

Bakdi Azzeddine1,Vanem Erik23

Affiliation:

1. University of Oslo Department of Mathematics, , Oslo 0851 , Norway

2. University of Oslo Department of Mathematics, , Oslo 0851 , Norway ;

3. DNV Group Research and Development , Høvik 1322 , Norway

Abstract

Abstract Maritime autonomous surface ships (MASSs) will reshape the fast-evolving ecosystem for their attractive socio-economic benefits and potential to improve safety. However, their new systems and technology need thorough verifications to identify unintended components of risk. The interaction between MASS cyber-physical systems and the existing regulatory framework is currently unpredictable; artificial intelligence-powered intelligent situation awareness and autonomous navigation algorithms must safely and efficiently adhere to the regulations which are only designed for human interpretation without MASSs consideration. This paper contributes to algorithmic regulations and particularly algorithmic COLREGs in real-world MASS applications. It focuses on codifying COLREGs into a machine-executable system applicable to MASSs, then analyzing their performance in dynamic and mixed interactions between multiple vessels in complex scenarios. Based on fullest pairwise COLREGs criteria, this paper considers decision-making (DM) and complexity analysis in multi-collision-conflict scenarios. Complexity influential factors are an interplay between the characteristics of COLREGs, traffic scenarios, MASS interactions, and the environment. Participant vessels are the decision-makers forming a decentralized uncertain DM process, casted into a multi-participant multi-conflict multicriteria DM problem. This is tackled through the technique of graph models for conflict resolution, using risk graph models and fuzzy preferences over alternative collision-avoidance states. This paper conducts a comprehensive analysis of DM and navigational complexity; we develop novel complexity estimation scores, tools for complexity monitoring for human intervention, and spatial analysis of traffic complexity for geo-intelligent MASSs deployment and operation planning. The presented work is validated on a database of historical scenarios extracted from multiple data sources.

Funder

Norges Forskningsråd

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3