Mist Generation During Metal Machining

Author:

Thornburg Jonathan1,Leith David1

Affiliation:

1. Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599

Abstract

Use of metalworking fluids during machining results in a mist that is associated with adverse health effects. Experiments conducted on a small lathe quantified the amount of mist generated by evaporation/condensation, centrifugal force, and impaction. Evaporation/condensation was the most important mechanism, followed by centrifugal force, then impaction. For evaporation/condensation, rotational speed and cut depth determined the amount of heat generated during machining, whereas fluid flow determined the amount of heat transferred to the liquid. The flow-rotational speed interaction influenced mist generation by centrifugal force, whereas mist generation by impaction was determined only by fluid flow. [S0742-4787(00)01303-5]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. Leep, H. R., 1994, “Metal Cutting Processes,” in Metalworking Fluids, J. P. Byers, ed., Marcel Dekker, New York.

2. National Institute for Occupational Safety and Health (NIOSH), 1977, National Occupational Hazard Survey, Vol. III (DHHS/NIOSH publ. no. 78-114), Cincinnati, OH, pp. 216–219.

3. Jarvholm, B., Fast, K., Lavenius, B., and Tomsic, P., 1985, “Exposure to Cutting Oils and Its Relation to Skin Tumors and Premalignant Skin Lesions on the Hands and Forearms,” Scand. J. Work Environ. Health, 11, pp. 365–369.

4. Robins, T. G., Seixas, N. S., Burge, H., Abrams, L., and Minick, S., 1995, “Association of Cross-Shift Decrements in Pulmonary Function with Machining Fluid Exposure,” Am. J. Respir. Crit. Care Med. 151, p. A420A420.

5. Park, R. M., Wegman, D. H., Silverstein, M. A., Maizlish, N. A., and Mirer, F. E., 1988, “Causes of Death Among Workers in a Bearing Manufacturing Plant,” Am. J. Ind. Med., 26, pp. 449–463.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3