Spatial Temperature and Water Molar Concentration Measurements Using Thermal and Electrostrictive Laser-Induced Grating Spectroscopy During Operation of a Swirl Burner at Pressure

Author:

Weller Lee1,Shah Priyav2,Giles Anthony3,Domenico Francesca De1ORCID,Morris Steve3,Williams Benjamin A. O.2,Hochgreb Simone1

Affiliation:

1. Department of Engineering, University of Cambridge , Cambridge CB2 1PZ, UK

2. Department of Engineering, University of Oxford , Oxford OX1 3PJ, UK

3. School of Engineering, Cardiff University , Cardiff CF24 3AA, UK

Abstract

Abstract Laser-Induced Grating Spectroscopy (LIGS) was applied in a high-pressure combustion facility. Instantaneous (sub-μs), spatially resolved (within 5 mm) measurements of temperature and molar fractions of water were obtained using thermal and electrostrictive LIGS signals. Temperatures up to 1800 K and water molar fractions between 0.01 and 0.12 were measured. A new analytic approach was developed to extract temperature from the frequencies of the measured signal within the flame brush region, where mixtures contain both burnt and unburnt gases. Mean product temperatures are shown to be 8% lower than the adiabatic temperatures for the nominal equivalence ratio, and 14% higher than measurements made with a thermocouple, uncorrected for radiation losses. This work represents the first application of LIGS to a high-pressure, turbulent swirling flame, opening up the potential for future uses in other real-world applications. Challenges associated with the deployment of the technique are described as are potential measures to overcome these difficulties.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3