Comparison of Molecular Simulation and Pseudo-Rigid-Body Model Predictions for a Carbon Nanotube–Based Compliant Parallel-Guiding Mechanism

Author:

DiBiasio Christopher M.1,Culpepper Martin L.1,Panas Robert1,Howell Larry L.2,Magleby Spencer P.2

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

2. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

Abstract

We report on the accuracy of the pseudo-rigid-body model (PRBM) in predicting the behavior of a nanoscale parallel-guiding mechanism (nPGM) that uses two single-walled (5,5) carbon nanotubes (CNTs) as the flexural guiding elements. The nPGM has two regions of behavior: region 1 is governed by the bulk deformation of the nanotubes, and region 2 is characterized by hingelike flexing of four “kinks” that occur due to buckling of the nanotube walls. PRBM parameters for (5,5) CNTs are proposed. Molecular simulation results of region 1 behavior match PRBM predictions of (1) kinematic behavior with less than 7.3% error and (2) elastomechanic behavior with less than 5.7% error. Although region 1 is of more interest because of its well-defined and stable nature, region 2 motion is also investigated. We show that the PRBM parameters are dependent on the selection of the effective tube thickness and moment of inertia, the lesson being that designers must take care to consider the thickness and moment of inertia values when deriving PRBM constants.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference44 articles.

1. Making Molecular Machines Work;Browne;Nat. Nanotechnol.

2. Compliant Parallel-Guiding Mechanisms;Derderian

3. Laterally Driven Polysilicon Resonant Microstructures;MEMS electrostatic actuator reference;Sens. Actuators

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3