Estimation of Heat-Transfer Coefficients, the Upward Heat Flow, and Evaporation in a Solar Still

Author:

Sharma V. B.1,Mullick S. C.1

Affiliation:

1. Centre of Energy Studies, Indian Institute of Technology-Delhi, New Delhi 110016, India

Abstract

The present work enables prediction of the performance of a solar still through simple calculations. Estimation of the temperature of the glass cover by an empirical relation developed in this work permits calculation of the heat-transfer coefficients, the upward heat flow, and evaporation. Since some of the heat-transfer coefficients vary substantially and nonlinearly with temperature, the empirical relation developed for glass cover temperature is based on an approximate solution of the heat balance equation. Hence, the overall upward heat flow factor is obtained with a maximum absolute error of three percent compared to the value obtained through a numerical solution of the heat balance equation along with the relations for vapor pressure and latent heat. The fraction of upward heat flow utilized for evaporation is determined with a maximum absolute error of 0.5 percent. The range of variables covered is 30°C to 80°C in water temperature, 5W/m2K to 40W/m2K in wind heat-transfer coefficient, and 5°C to 40°C in ambient temperature.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3