Affiliation:
1. Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77001
Abstract
The onset of Marangoni convection driven by surface tension gradients in radiating fluid layers is studied. The system considered consists of a fluid layer of infinite horizontal extent which is confined between a free upper surface and a rigid isothermal lower surface. The radiative boundaries of black–black, mirror–mirror, and black–mirror are considered. The critical conditions leading to the onset of convective fluid motions in a microgravity environment are determined numerically by linear stability theory. The perturbation equations are solved as a Bolza problem in the calculus of variations. The results are presented in terms of the critical Marangoni number and optical thickness for a wide range of some radiative parameters, including the Planck number, nongrayness of the fluid, and the emissivity of the boundaries. It is found that radiation suppresses Marangoni convection during material processing in space.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献