Rare Earth Elements in North Dakota Lignite Coal and Lignite-Related Materials

Author:

Laudal Daniel A.1,Benson Steven A.2,Palo Daniel3,Addleman Raymond Shane4

Affiliation:

1. Institute for Energy Studies, University of North Dakota, 2844 Campus Road, Stop 8153 Collaborative Energy Complex Room 246, Grand Forks, ND 58202-8153 e-mail:

2. Microbeam Technologies, Inc., 4200 James Ray Drive, Ste 193, Grand Forks, ND 58202 e-mail:

3. Barr Engineering Company, 3128 14 Avenue E., Hibbing, MN 55746 e-mail:

4. Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 e-mail:

Abstract

Rare earth elements (REE) are crucial materials in an incredible array of consumer goods, energy system components, and military defense applications. However, the global production and entire value chain for REE is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including those previously mined in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths is deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10–20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This paper details the results of a study on characterization of North Dakota lignite and lignite-related feedstocks as an assessment of their feasibility for REE recovery. The abundance, distribution, and modes of occurrence of the REE in the samples collected were determined in this initial study to inform the selection of appropriate extraction and concentration methods to recover the REE. Materials investigated include the lignite coals, clay-rich sediments associated with the coal seams, and materials associated with a lignite beneficiation system and power plant. The results show that high REE levels exist both in lignite coals and associated sediments. The form of the REE in the clay materials is primarily as ultrafine mineral grains. In the lignite coals, approximately 80–95% of the rare earths content is organically associated, primarily as coordination complexes.

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference47 articles.

1. Rare-Earth Element, Encyclopaedia Britannica,2014

2. U.S. Department of Energy National Energy Technology Laboratory: Geology of Rare Earth Deposits,2016

3. The Economic Benefits of the North American Rare Earths Industry;Economics & Statistics Department—American Chemistry Council,2014

4. Rare Earth Elements From Coal and Coal By-Products;U.S. Department of Energy National Energy Technology Laboratory,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3