Influence of Normal Stress on Creep in Tension and Compression of Polyethylene and Rigid Polyvinyl Chloride Copolymer

Author:

O’Connor D. G.1,Findley W. N.1

Affiliation:

1. Division of Engineering, Brown University, Providence, R. I.

Abstract

New apparatus suitable for compression creep tests of slender specimens is described. The apparatus is designed to prevent buckling and to introduce a minimum of friction. Results are reported for tension and compression creep of polyethylene and annealed, unplasticized polyvinyl chloride copolymer at 75 deg F and 50 per cent relative humidity. The stress σ, strain ε, time t data from these tests were found to be describable with reasonable accuracy by the equation ε=ε0′sinhσ/σε+m′tnsinhσ/σm where ε0′, m′, n, σε, and σm are material constants. The results for polyethylene show that the creep in tension and compression were virtually the same. However, the creep in tension was similar but larger than in compression for polyvinyl chloride. These observations are interpreted in terms of the material structure and the influence of the normal stress on active shear planes.

Publisher

ASME International

Subject

General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3