Optimization of Axial Thrust Balancing Swirl Breakers in a Centrifugal Pump Using Stochastic Methods

Author:

Lefor Dominik1,Kowalski Jan1,Kutschelis Boris2,Herbers Thomas2,Mailach Ronald1

Affiliation:

1. Ruhr-Universität Bochum, Bochum, Germany

2. Klaus Union GmbH & Co. KG, Bochum, Germany

Abstract

Hydraulic axial thrust balancing in single-stage radial pumps is a frequently applied procedure to reduce the bearing load to a reasonable level. It leads to considerable efficiency loss, which gives reason to investigate the optimization potential of the common balancing methods. This paper’s focus is on so-called casing ribs, which are used in the default design of an examined industrial pump. Radial vanes on the casing wall of the front impeller side chamber work as swirl breakers by decreasing rotating flow whereby the static pressure at the shroud increases and counteracts the resulting axial thrust. The objective is to retain the reduction of axial thrust and to improve the internal efficiency simultaneously. Therefore a CFD model of the industrial radial pump is created with Ansys CFX. Sufficient numerical quality is ensured whereby consistency is verified by a mesh study. The model is validated by integral values of the characteristic curve and axial thrust measurements as well as by experimental transient static pressure measurement at different locations of the pump flow. Probes are placed in the suction port, the volute and the impeller side chambers, where most balancing methods are implemented. Since the side chamber contains a complex flow, the effect of geometry changes is hard to predict. For this reason a stochastically based sensitivity analysis using a comprehensively parameterized geometry of the front side chamber domain with the included casing ribs is carried out. For this purpose 110 design points are calculated and evaluated with support of the software Optislang. Correlations of parameters are suggested and important parameters regarding the objective are identified. Some reasonable model simplifications are conducted to reduce the computational time. According to the acquired findings a local optimization is executed using the best sample of the sensitivity analysis as start design. An evolutionary algorithm method determines a best design with an efficiency improvement of 0.26 percentage points. It is discussed in detail conclusively.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3