Application of Plasma Discharges to the Ignition of a Jet Diffusion Flame

Author:

Liao Ying-Hao1,Sun Ming-Chien1,Lai Ru-Yi1

Affiliation:

1. National Chiao Tung University, Hsinchu, Taiwan

Abstract

The present study experimentally investigates the effect of plasma discharges on the ignition of a laminar methane jet diffusion flame in a stream of co-flow air. The Reynolds number of the jet flame, based on the nominal jet velocity and the nozzle diameter, is approximately Re = 2000. The plasma discharge, a corona type, is produced between two tungsten wires with a diameter of 0.5 mm and a gap of 15 mm. Results show that the application of plasma discharge in a near-nozzle region can ignite the flame. A non-reacting free jet similarity solution is applied to examine the ignition locations and it shows that many of the locations are outside the jet boundary, where the mixture is leaner than stoichiometry. The minimum input power required for flame ignition is seen to increase with radial distance away from the nozzle and decrease with downstream locations. A high input power required for ignition is found to be close to the nozzle exit, where a high strain can be expected. Spectroscopic study confirms the emission spectra in non-thermal air plasma and shows the intensity difference in spectra between discharges that ignite and do not ignite flames.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3