DNS of Turbulent Bubbly Flows in Plane Channels Using the Front-Tracking Algorithm of TrioCFD

Author:

Bois G.1,du Cluzeau A.1

Affiliation:

1. CEA (French Alternative Energies and Atomic Energy Commission), Gif-sur-Yvette, France

Abstract

Two-phase turbulence is studied using DNS of upward turbulent bubbly flows in a plane channel. Fully deformable monodispersed bubbles are tracked by the Front-Tracking algorithm implemented in TrioCFD code on the TRUST platform. Two sets of fluid properties are used. Firstly, two simulations are performed with virtual fluids at a low void fraction of 3% and for a Reynolds friction number of 127 to benchmark our code against [1]. Good agreements are obtained for both deformable and spherical cases. A third simulation closer to pressurized water reactor (PWR) conditions was performed at higher void fraction and Reynolds number to push the limits of DNS capabilities. DNS results are averaged (i) to provide reference profiles for an up-scaling methodology towards RANS two-fluid models and (ii) to analyze the equilibrium between buoyancy, surface tension, viscous and turbulent shear at statistically steady-state. Surface tension forces and turbulence are essentials to capture the equilibrium. Their accurate modeling is the key to velocities and void fraction predictions in averaged codes. Our analysis reveals the important role of surface tension, not only in the determination of the bubble shapes, but also as a source of local imbalance of the momentum transfer between phases. More advanced models considering interfacial energy are necessary to predict these flows.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3