Numerical Study on Flow Characteristics in High Multi-Stage Pressure Reducing Valve

Author:

Chen Fu-qiang1,Gao Zhi-xin1,Qian Jin-yuan1,Jin Zhi-jiang1

Affiliation:

1. Zhejiang University, Hangzhou, China

Abstract

In this paper, a new high multi-stage pressure reducing valve (HMSPRV) is proposed. The main advantages include reducing noise and vibration, reducing energy consumption and dealing with complex conditions. As a new high pressure reducing valve, its flow characteristics need to be investigated. For that the valve opening has a great effect on steam flow, pressure reduction and energy consumption, thus different valve openings are taken as the research points to investigate the flow characteristics. The analysis is conducted from four aspects: pressure, velocity, temperature fields and energy consumption. The results show that valve opening has a great effect on flow characteristics. No matter for pressure, velocity or temperature field, the changing gradient mainly reflects at those throttling components for all valve openings. For energy consumption, in the study of turbulent dissipation rate, it can be found that the larger of valve opening, the larger of energy consumption. It can be concluded that the new high multi-stage pressure reducing valve works well under complex conditions. This study can provide technological support for achieving pressure regulation, and benefit the further research work on energy saving and multi-stage design of pressure reducing devices.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3