Affiliation:
1. Wuhan University, Wuhan, China
Abstract
In this paper numerical simulations were conducted to analyze the effects of design parameters and distribution of balancing-hole on the axial-force of a partial emission pump. The studied pump is a single stage pump with a Barske style impeller. Based on the original impeller, we designed 7 pumps with different balancing-hole diameters and the partial emission pump equipped with different impellers were simulated employing the commercial computational fluid dynamics (CFD) software Fluent 12.1 to solve the Navier-Stokes equations for three-dimensional steady flow. A sensitivity analysis of the numerical model was performed with the purpose of balancing the contradiction of numerical accuracy and the cost of calculation. The results showed that, with increasing of the capacity, the axial force varies little. The diameter of the inner balancing-hole plays a dominant role of reducing axial-force of partial emission pump, the axial-force decreases with increasing of inner balancing-hole diameter on the whole range of operation, the axial-force of impeller without inner balancing-hole is approximately 3 times larger than that of impeller with inner balancing-hole. While the diameter of outer balancing-hole has a reverse effects compared with that of inner balancing-hole. With increasing of outer balancing-hole, the axial force increases accordingly.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献