Development of Microbubble Generator and its Utilization to Enhance the Mass Transfer in the Bubble Plumes and Columns

Author:

Kaneko Akiko1,Gong Xiaobo2,Takagi Shu3,Matsumoto Yoichiro3

Affiliation:

1. Tsukuba University, Tsukuba, Ibaragi, Japan

2. Shanghai Jiaotong University, Shanghai, China

3. The University of Tokyo, Tokyo, Japan

Abstract

Microbubble has characteristics of large surface area to unit volume and small buoyancy. We propose an effective technique to generate tiny bubbles less than 200 μm diameter utilizing a venturi tube at high void fraction. The mechanism of bubble breakup in the venturi tube is elucidated that the bubbles expanded after passing through the throat and then shrank rapidly. The tiny bubbles are generated due to the surface instability of shrinking bubbles. The effect of bubble diameter and plume structure on mass transfer efficiency in bubble plumes and columns are investigated numerically. In order to capture the detailed plume structure, the interaction between liquid and bubbles is treated by a two-way coupling Eulerian–Lagrangian method. The gas transfer from bubbles to liquid is computed by modeling the mass transfer rate of individual bubbles. The numerical results show that the dissolution efficiency changes rapidly when the initial bubble size reaches certain value. The effect of bubble-induced liquid velocity on the residence time of microbubbles increases with the decrease of initial bubble diameters, and also increases with the reduction of initial water depth. By comparing the concentrated and uniform bubble injections, the results suggest that the uniform injection provides much better mass transfer efficiency becasue the circulation of liquid induced by bubble is greatly suppressed.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3