Multiphase Flow Analysis for Air-Water Bubbly Flow in a Multiphase Pump

Author:

Suh Jun-Won1,Choi Young-Seok2,Kim Jin-Hyuk2,Lee Kyoung-Yong2,Joo Won-Gu3

Affiliation:

1. Korea Institute of Industrial Technology, Seoul, Korea

2. Korea Institute of Industrial Technology, Cheonan, Korea

3. Yonsei University, Seoul, Korea

Abstract

Owing to the exhaustion of onshore resources, the development of resources has been expanded to the deep subsea. As the necessity of offshore plants is steadily increasing, there is an increasing interest in studying multiphase transportation technology. Multiphase pumps differ from single phase pumps in many ways, including performance evaluation, internal flow characteristics, and complex design methods. The primary issue of multiphase flow transport technology is that the characteristics of the internal flow change according to the gas volume fraction (GVF). Many theoretical and experimental analyses have been conducted to understand the mechanism of the internal flow field in multiphase pumps. As advanced computational fluid dynamics (CFD) based on the three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations have become reliable tools, numerical analyses accompanied by experimental research have been applied to investigate the hydraulic performance and internal flow field of multiphase pumps. A number of studies have been conducted to investigate these phenomena. However, the understanding of the detailed mechanisms of phase separation and the forces that occur in the internal flow is not completely clear. This study aimed to establish a multiphase flow analysis method with high reliability when the internal flow of the multiphase pump is bubbly flow. To ensure the reliability of the numerical analysis, the numerical results were compared with the experimental data. Additionally, to analyze the detailed dynamic flow phenomena in the multiphase pump, the effects of various interphase forces acting between the liquid and gas phase and the particle diameter of the gas phase on the hydraulic performance were investigated.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3