Design and Multiparameter Optimization of Jet-Pumps in a Pipeline Loops Using CFD Tools

Author:

Toteff Jens1,Asuaje Tovar Miguel1

Affiliation:

1. Universidad Simón Bolívar, Sartenejas, Venezuela

Abstract

Despite their low efficiency compared with centrifugal pumps, jet-pumps are highly reliable robust equipment with modest maintenance which is ideal for many applications, mostly in the oil & gas industry. For example, jet-pumps could result attractive compared to other multiphase pump systems in terms of reactivating transport lines of heavy crude oil. Nevertheless, their design method and performance analysis are rarely known in the literature and keep a high experimental component like most of the pumping equipment. Starting with a pump designed by a traditional method, this paper aims to evaluate the effect of multiple geometrical and operational variables that influence the jet-pump performance combining CFD (Computational Fluid Dynamics) simulation and optimization algorithms using commercials software (ANSYS CFX® and PIPEIT® tool). Automatically, the geometric parameters are modified according to the rules of the optimization routines seeking to maximize the flow capacity, respecting restrictions such as energy consumption. A case study is presented for the preliminary design of a pump to boost flow capacity in a trunk line of a heavy oil field. As preliminary design all simulations were carried out using single phase water flow. With this method, it was possible to quickly evaluate around 400 geometries of jet-pumps. The geometry of the optimum final pump is consistent with other pumps reported by other works. This pump enhances the fluid capacity of the line in 17% over the traditional design for the same parameters of power or consumed energy.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3