Unsteady Phenomena Induced Pressure Pulsation and Radial Load in a Centrifugal Pump With Slope Volute

Author:

Zhang Ning1,Yang Minguan1,Gao Bo1,Li Zhong1

Affiliation:

1. Jiangsu University, Zhenjiang, Jiangsu, China

Abstract

Vibration in centrifugal pump still remains a tough problem to solve. Many studied have been done to find the relationship between hydraulic design and vibration. Both experiments and numerical simulation methods have been proposed to make clear the influence of pump parameters related to vibration. It is evident that unsteady phenomena in centrifugal pump are the main factors causing vibration. Also motor-stator interaction of impeller and volute keeps predominant role considering hydraulic factors. Till now almost all reported researches consider pump geometry parameters, but the shape of volute is rarely proposed. To reduce interaction between impeller and volute tongue, a special volute with slope diffuser section is put forward in this paper. The relative position of volute tongue changes compared to the conventional spiral volute. Thus the effect of flow field striking with volute tongue can be receded effectively, and vibration will be reduced. As the developing of computer technology, it is possible for us to achieve the unsteady flow field inner pump by using numerical simulation methods. A commercial software Fluent was adopted to analyze pressure pulsation and radial load of model pump. Slant angle and clearance rate were optimized considering pressure magnitude. It is observed that pressure amplitude at blade passing frequency achieve the lowest level at slant angle 15°. Pressure magnitude decreases significantly with the increasing of clearance, but limited to radial size of volute, it is suggested to be in the range of 0.134∼0.250. Several monitor points are selected along the volute to have overall understanding of pressure pulsation characteristics. Pressure pulsation at blade passing frequency keeps the predominant in motor-stator interaction. Amplitude of both pressure and radial load increase rapidly when pump operating at off designed conditions.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3