Reference Conditions and Substructuring Techniques in Flexible Multibody System Dynamics

Author:

O'Shea James J.1,Jayakumar Paramsothy2,Mechergui Dave2,Shabana Ahmed A.1,Wang Liang1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607 e-mail:

2. U.S. Army TARDEC, 6501 E. 11 Mile Road, Warren, MI 48397-5000 e-mail:

Abstract

The floating frame of reference (FFR) formulation is widely used in multibody system (MBS) simulations for the deformation analysis. Nonetheless, the use of elastic degrees-of-freedom (DOF) in the deformation analysis can increase significantly the problem dimension. For this reason, modal reduction techniques have been proposed in order to define a proper set of assumed body deformation modes. Crucial to the proper definition of these modes when the finite element (FE) FFR formulation is used is the concept of the reference conditions, which define the nature of the deformable body coordinate system. Substructuring techniques, such as the Craig–Bampton (CB) method, on the other hand, have been proposed for developing efficient models using an assembly of their lower order substructure models. In this study, the appropriateness and generality of using the CB method in MBS algorithms are discussed. It is shown that, when a set of reference conditions are not applied, the CB transformation leads to the free–free deformation modes. Because a square CB transformation is equivalent to a similarity transformation that does not alter the problem to be solved, the motivation of using the CB method in MBS codes to improve the solution is examined. This paper demonstrates that free–free deformation modes cannot be used in all applications, shedding light on the importance of the concept of the FE/FFR reference conditions. It is demonstrated numerically that a unique model resonance frequency is achieved using different modes associated with different reference conditions if the shapes are similar.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3