Seizure Resistance of Cast Aluminum Alloys Containing Dispersed Graphite Particles of Different Sizes

Author:

Rohatgi P. K.1,Pai B. C.2

Affiliation:

1. Department of Metallurgy, Mechanical Engineering and Industrial Management, Indian Institute of Science, Bangalore, India; Regional Research Laboratory, Trivandrum, Kerala, India

2. Materials Division, National Aeronautical Laboratory, Bangalore, India

Abstract

Seizure resistance of the cast graphite particle-aluminum composite alloys, containing graphite particles of varying sizes has been studied using a Hohman wear tester. The size of the spheroidal graphite particles was varied from 30 μm to 400 μm, and in one case 80 μm size flake graphite was used to observe the effect of shape of graphite. When the graphite content of graphitic aluminum alloys is more than 2 percent, these alloys can be self-mated under condition of boundary lubrication without seizing. The size and shape of the graphite particles had no significant effect on the seizure resistance of these alloys, in the range of conditions investigated in this study. This is attributed to the extensive deformation and fragmentation of graphite due to the low yield strength of the aluminum matrix and the low flow stress of the graphite particles. During wear, the deforming aluminum matrix accentuates the deformation and fragmentation of subsurface graphite particles and causes them to come to the mating surface, thus providing continuous lubrication and preventing seizure. Even after a short run-in period, a continuous layer of graphite is observed on the mating surfaces of graphite particle-aluminum composite alloys. This layer persists even after extensive wear deformation.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3