Affiliation:
1. School of Instrument Science and Engineering, Southeast University, No. 2 Sipailou, Xuanwu District, Nanjing 210096, Jiangsu, China
2. Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843-3367
Abstract
Abstract
Unknown environmental noise and varying operation conditions negatively affect gear fault diagnosis (GFD) performance. In this paper, the sample/feature hybrid transfer learning (TL) strategies are adopted for GFD under varying working conditions, where source working conditions are considered to help the learning of target working conditions. Here, a multiple domains-feature vector is extracted where certain insensitive features offset the adverse effects of varying working conditions on sensitive features, including time domain, frequency domain, noise domain, and torque domain. Before TL, the signed-rank and chi-square test-based similarity estimation frame is adopted to select source data sets, aiming to reduce the possibility of negative transfer. Then, the hybrid transfer model, including the fast TrAdaBoost and partial model-based transfer (PMT) algorithm, is carried out, whose weights are allocated in sample and feature, respectively. Related experiments were conducted on the drivetrain dynamics simulator, which proves that feature transfer is more suitable for low-quality source domains while sample transfer is more suitable for high-quality source domains. Compared with non-transfer strategy, transfer learning is a useful tool to solve a practical GFD problem when facing with multiple working conditions, thus enhancing the universality and application value in fault diagnosis field.
Funder
National Natural Science Foundation of China
Scientific Research Foundation of Graduate School of Southeast University
Subject
Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献