Exploring Sample/Feature Hybrid Transfer for Gear Fault Diagnosis Under Varying Working Conditions

Author:

Shen Fei1,Langari Reza2,Yan Ruqiang1

Affiliation:

1. School of Instrument Science and Engineering, Southeast University, No. 2 Sipailou, Xuanwu District, Nanjing 210096, Jiangsu, China

2. Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX 77843-3367

Abstract

Abstract Unknown environmental noise and varying operation conditions negatively affect gear fault diagnosis (GFD) performance. In this paper, the sample/feature hybrid transfer learning (TL) strategies are adopted for GFD under varying working conditions, where source working conditions are considered to help the learning of target working conditions. Here, a multiple domains-feature vector is extracted where certain insensitive features offset the adverse effects of varying working conditions on sensitive features, including time domain, frequency domain, noise domain, and torque domain. Before TL, the signed-rank and chi-square test-based similarity estimation frame is adopted to select source data sets, aiming to reduce the possibility of negative transfer. Then, the hybrid transfer model, including the fast TrAdaBoost and partial model-based transfer (PMT) algorithm, is carried out, whose weights are allocated in sample and feature, respectively. Related experiments were conducted on the drivetrain dynamics simulator, which proves that feature transfer is more suitable for low-quality source domains while sample transfer is more suitable for high-quality source domains. Compared with non-transfer strategy, transfer learning is a useful tool to solve a practical GFD problem when facing with multiple working conditions, thus enhancing the universality and application value in fault diagnosis field.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Graduate School of Southeast University

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3