Prediction of Fracture Initiation Pressure for Slotting-Directional Hydraulic Fracturing Based on the Anisotropy of Coal

Author:

Jingwei Zheng1,Zhaolong Ge1,Yiyu Lu1,Zhe Zhou1,Jing Zhou1,Wenyu Fu1

Affiliation:

1. Chongqing University State Key Laboratory of Coal Mine Disaster Dynamics and Control;, School of Resources and Safety Engineering, , Chongqing 400044 , China

Abstract

Abstract The precise estimation of fracture initiation pressure is crucial for the effective implementation of slotting-directional hydraulic fracturing methods in coal seams. Nonetheless, current models fail to account for the impact of the morphology of the slotted borehole and the anisotropy of coal. To address this issue, a three-dimensional model was created in this study, which simplified the slotted borehole as an elliptical medium and the coal as an orthotropic medium. Laboratory experiments were conducted to validate the model, and the findings regarding the changes in fracture initiation pressure and deflection angle due to various factors were presented. The calculated outcomes of the proposed model align with the observed pattern of the experimental results, and the numerical discrepancy falls within the acceptable range of 7%, showcasing the precision of the proposed model. A rise in the horizontal stress difference and a decrease in the depth of the slots will result in an elevation of the fracture initiation pressure and deflection angle. In addition, the slotting angle will impact the distribution pattern of the fracture initiation pressure and deflection angle, underscoring the significance of these factors in the hydraulic fracturing of slotted boreholes.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3