Non-Linear Characteristics in the Dynamic Responses of Seated Subjects Exposed to Vertical Whole-Body Vibration

Author:

Matsumoto Yasunao1,Griffin Michael J.2

Affiliation:

1. Department of Civil and Environmental Engineering, Saitama University, 255 Shimo-Ohkubo, Urawa, Saitama, 338-8570, Japan

2. Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton, SO17 1BJ, England

Abstract

The effect of the magnitude of vertical vibration on the dynamic response of the seated human body has been investigated. Eight male subjects were exposed to random vibration in the 0.5 to 20 Hz frequency range at five magnitudes: 0.125, 0.25, 0.5, 1.0 and 2.0 ms−2 r.m.s. The dynamic responses of the body were measured at eight locations: at the first, fifth, and tenth thoracic vertebrae (T1, T5, T10), at the first, third, and fifth lumbar vertebrae (L1, L3, L5) and at the pelvis (the posterior-superior iliac spine). At each location, the motions on the body surface were measured in the three orthogonal axes within the sagittal plane (i.e., the vertical, fore-and-aft, and pitch axes). The force at the seat surface was also measured. Frequency response functions (i.e., transmissibilities and apparent mass) were used to represent the responses of the body. Non-linear characteristics were observed in the apparent mass and in the transmissibilities to most measurement locations. Resonance frequencies in the frequency response functions decreased with increases in the vibration magnitude (e.g. for the vertical transmissibility to L3, a reduction from 6.25 to 4.75 Hz when the vibration magnitude increased from 0.125 to 2.0 ms−2 r.m.s.). The transmission of vibration within the spine also showed some evidence of a non-linear characteristic. It can be concluded from this study that the dynamic responses of seated subjects are clearly non-linear with respect to vibration magnitude, whereas previous studies have reported inconsistent conclusions. More understanding of the dependence on vibration magnitude of both the dynamic responses of the soft tissues of the body and the muscle activity (voluntary and involuntary) is required to identify the causes of the non-linear characteristics observed in this study.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3