Affiliation:
1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
Abstract
Computation of nonequilibrium compressible turbulent boundary layers using Coles’ three-parameter representation for the layer (cf, δ, Π) is discussed. Governing equations include momentum integral, skin friction, and an integral moment equation. It is shown that the hypothetical equilibrium layer concept employed by Alber to determine the dissipation integral of the mechanical energy equation can be utilized to estimate similar auxiliary parameters in the entrainment and moment-of-momentum integral equations. A series of comparisons of experimental data and predictions, using each of the moment equations shows that all combinations yield very similar results which are in general agreement with measurements. Some sensitivity to starting conditions was observed with the moment-of-momentum and entrainment relations.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Eclectic merger of crocco-lees and chapman-korst approach to near wake;International Journal of Heat and Mass Transfer;1974-12
2. Heat transfer — A review of 1973 literature;International Journal of Heat and Mass Transfer;1974-11