Affiliation:
1. State University of New York at Buffalo, Buffalo, N. Y.
Abstract
The two-dimensional equations of magnetoelastodynamics are considered as a symmetric hyperbolic system of linear first-order partial-differential equations in three independent variables. The characteristic properties of the system are determined and a numerical method for obtaining the solution to mixed initial and boundary-value problems in plane magnetoelastodynamics is presented. Results on the von Neumann necessary condition are presented. Application of the method to a problem which has a known solution provides further numerical evidence of the convergence and stability of the method.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献