Analytical Assessment of the Remaining Strength of Corroded Pipelines and Comparison With Experimental Criteria

Author:

Cunha Sérgio B.1,Netto Theodoro A.2

Affiliation:

1. Professor Mechanical Engineering Department, State University of Rio de Janeiro, R. São Francisco Xavier 524, Rio de Janeiro, RJ 20550-900, Brazil e-mail:

2. Professor, Ocean Engineering Department, COPPE, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Prédio do CT, Bloco I, sala 108, Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil

Abstract

Recently published analytical solutions for the remaining strength of a pipeline with narrow axial and axisymmetric volumetric flaws are described in this paper, and their experimental and numerical validation are reviewed. Next, the domains of applicability of each solution are studied, some simplifications suitable to steel pipelines are introduced, and an analytical model for the remaining strength of corroded steel pipelines is presented. This analytical solution is compared with the standards most widely used in the industry for assessment of corroded pipelines: ASME B31G, modified ASME, and DNV RP-F101. The empirical and analytical solutions are compared with respect to their most relevant parameters: critical (or flow) stress, flaw geometry parameterization, and Folias or bulging factor formulation. Finally, two common pipeline steels, API 5L grades X42 and X100, are selected to compare the different corrosion assessment methodologies. Corrosion defects of 75%, 50%, and 25% thickness reduction are evaluated. None of the experimental equations take into account the strain-hardening behavior of the pipe material, and therefore, they cannot properly model materials with very dissimilar plastic behavior. The comparison indicates that the empirical methods underestimate the remaining strength of shallow defects, which might lead to unnecessary repair recommendations. Furthermore, it was found that the use of a parameter employed by some of the empirical equations to model the assumed flaw shape leads to excessively optimistic and nonconservative results of remaining strength for long and deep flaws. Finally, the flaw width is not considered in the experimental criteria, and the comparative results suggest that the empirical solutions are somewhat imprecise to model the burst of wide flaws.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference41 articles.

1. Performance of European Cross-Country Oil Pipelines—Statistical Summary of Reported Spillages in 2010 and Since 1971,2011

2. 8th Report of the European Gas Pipeline Incident Group 1970–2010;European Gas Pipeline Incident Report Group,2011

3. Pipeline Product Loss Incidents (1962–2010),2011

4. Pipeline and Hazardous Materials Safety Administration, Pipeline Incident and Mileage Reports;U.S. Department of Transportation

5. Comparative Analysis of Pipeline Performance 2000–2008;National Energy Board of Canada,2010

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3