A Comparison of Network-Based Metrics of Behavioral Degradation in Complex Engineered Systems

Author:

Haley Brandon M.1,Dong Andy2,Tumer Irem Y.1

Affiliation:

1. Complex Engineered Systems Design Laboratory, School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331 e-mail:

2. Faculty of Engineering and Information Technologies, University of Sydney, Sydney, New South Wales 2006, Australia e-mail:

Abstract

It has been assumed, but not yet tested, that the topological disintegration of networks is relatable to degradations in complex engineered system behavior and that extant network metrics are capable of capturing these degradations. This paper tests three commonly used network metrics used to quantify the topological robustness of networks for their ability to characterize the degree of failure in engineered systems: average shortest path length, network diameter, and a robustness coefficient. A behavioral network of a complex engineered system is subjected to “attack” to simulate potential failures to the system. Average shortest path length and the robustness coefficient showed topological disintegration patterns which differed between nominal and failed cases, regardless of failure implementation location. The network diameter metric is not sufficiently dependent on local cluster topology to show changes in topology with edge removal failure strategies. The results show that topological metrics from the field of complex networks are applicable to complex engineered systems when they account for both local and global topological changes.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3