Analysis of Heat Transfer in Consecutive Variable Cross-Sectional Domains: Applications in Biological Media and Thermal Management

Author:

Mahjoob Shadi1,Vafai Kambiz1

Affiliation:

1. Department of Mechanical Engineering, University of California, Riverside, CA 92521

Abstract

Abstract Temperature prescription and control is important within biological media and in bioheat transport applications such as in hyperthermia cancer treatment in which the unhealthy tissue/organ is subject to an imposed heat flux. Thermal transport investigation and optimization is also important in designing heat management devices and small-scale porous-filled-channels utilized in electronic and biomedical applications. In this work, biological media or the stated heat management devices with a nonuniform geometry are modeled analytically as a combination of convergent, uniform and/or divergent configurations. The biological media is represented as blood saturated porous tissue matrix while incorporating cells and interstices. Two primary models, namely, adiabatic and constant temperature boundary conditions, are employed and the local thermal nonequilibrium and an imposed heat flux are fully accounted for in the presented analytical expressions. Fluid and solid temperature distributions and Nusselt number correlations are derived analytically for variable cross-sectional domain represented by convergent, divergent, and uniform or any combination thereof of these geometries while also incorporating internal heat generation in fluid and/or solid. Our results indicate that the geometrical variations have a substantial impact on the temperature field within the domain and on the surface with an imposed heat flux. It is illustrated that, the temperature distribution within a region of interest can be controlled by a proper design of the multisectional domain as well as proper selection of the porous matrix. These comprehensive analytical solutions are presented for the first time, to the best of the authors' knowledge in literature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3