Modeling of Thermal Cracking Furnaces Via Exergy Analysis Using Hybrid Artificial Neural Network–Genetic Algorithm

Author:

Alizadeh M.1,Sadrameli S. M.2

Affiliation:

1. Chemical Engineering Department, Tarbiat Modares University, Tehran 14115-114, Iran

2. Chemical Engineering Department, Tarbiat Modares University, Tehran 14115-114, Iran e-mail:

Abstract

In this study, we try to make an exergy analysis of an olefin cracking furnace more understandable by coupling it with the use of an artificial neural network–generic algorithm (ANN–GA) modeling. The presented method permits to provide an energy diagnosis of the process under a wide range of operating conditions. As a case study, one of the petrochemical complexes in Iran has been considered. The Petrosim process simulator software was used to obtain thermodynamic properties of the process streams and to perform exergy balances. The results are validated with industrial data obtained from the plant. The exergy destruction and exergetic efficiency for the main system components and the entire system were calculated. The simulation results reveal that the exergetic loss of the process increases with increasing steam ratio (SR) and decreases with coil outlet temperature (COT) and residence time (RT). The results show that the overall exergetic efficiency of the system is about 65%. The recorded and calculated data have been used as inputs for the neural network. The results show that ANN–GA is a highly effective method to optimize the performance of the neural networks, predicting the overall exergy efficiency. Comparing to phenomenological modeling based on the detailed knowledge of the furnace condition, the use of the introduced ANN–GA model saves significant amount of the time needed for the performance prediction of cracking furnaces.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3