Investigation of Tyre Pattern Effect on the Aerodynamics of a Passenger Vehicle

Author:

Josefsson Erik1,Hobeika Teddy2,Sebben Simone1,Urquhart Magnus2

Affiliation:

1. Mechanics and Maritime Sciences, Chalmers University of Technology , Gothenburg 412 96, Sweden

2. Aerodynamics Volvo Cars , Gothenburg 418 78, Sweden

Abstract

Abstract The wheels of a passenger vehicle are one of the major contributors to the total aerodynamic drag, making their aerodynamic performance a considerable factor for the overall energy efficiency of the vehicle. Previous studies have shown that the complex flow field created by the wheels is sensitive to small geometrical variations of the tyre and that features such as shoulder profile and tread pattern can have a significant impact on drag and lift. In this study, the DrivAer model is used to evaluate the flow fields and aerodynamics of four tyre tread patterns with two rim designs. Full-scale wind tunnel tests were conducted where forces, surface pressures and flow fields were measured. Numerical simulations were also performed to aid the analysis. Using a slick tyre as the reference, it was found that rain grooves typically reduced the drag, whereas the effect of lateral grooves was dependent on the rim configuration. For the lift forces, the largest lift variations were obtained for the front lift which, in general, was reduced by rain grooves and increased by lateral grooves, most notably for the closed rim. The importance of considering the parasitic lift force acting on the wheel drive units when comparing experiments and simulations was demonstrated.

Funder

Energimyndigheten

Publisher

ASME International

Subject

Mechanical Engineering

Reference38 articles.

1. Aerodynamic Characteristics of Car Wheels;Int. J. Veh. Des.,1983

2. Rotating Wheels - Their Impact on Wind Tunnel Test Techniques and on Vehicle Drag Results;SAE Trans.,1997

3. Computational and Experimental Evaluation of a Pad Correction for a Wind Tunnel Balance Equipped for Rotating Wheels,2002

4. Inclusion of the Physical Wind Tunnel in Vehicle CFD Simulations for Improved Prediction Quality;J. Wind Eng. Ind. Aerodyn.,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3