Piston Bowl Geometry Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine

Author:

Tang Meng1,Pei Yuanjiang2,Guo Hengjie1,Zhang Yu2,Torelli Roberto3,Probst Daniel4,Fütterer Carsten5,Traver Michael2

Affiliation:

1. Argonne National Laboratory, Lemont, IL 60439

2. Aramco Services Company: Aramco Research Center—Detroit, Novi, MI 48377

3. Argonne National Laboratory, Lemont, IL 60439-4801

4. Convergent Science, Madison, WI 53719

5. Friendship System, Potsdam 14482, Germany

Abstract

Abstract A design optimization campaign was conducted to search for improved combustion profiles that enhance gasoline compression ignition in a heavy-duty diesel engine with a geometric compression ratio of 17.3. A large-scale design of experiments approach was used for the optimization, employing three-dimensional computational fluid dynamics simulations. The main parameters explored include geometric features, injector specifications, and swirl motion. Both stepped-lip and re-entrant bowls were included in order to assess their respective performance implications. A total of 256 design candidates were prepared using the software package CAESES for automated and simultaneous geometry generation and combustion recipe perturbation. The design optimization was conducted for three engine loads representing light to medium load conditions. The design candidates were evaluated for fuel efficiency, emissions, fuel–air mixing, and global combustion behavior. Simulation results showed that the optimum designs were all stepped-lip bowls, due to improvements in fuel–air mixing, as well as reduced heat loss and emissions formation. Improvements in indicated specific fuel consumption of up to 3.2% were achieved while meeting engine-out NOx emission targets of 1–1.5 g/kW · h. Re-entrant bowls performed worse compared to the baseline design, and significant performance variations occurred across the load points. Specifically, the re-entrant bowls were on par with the stepped-lip bowls under light load conditions, but significant deteriorations occurred under higher load conditions. As a final task, selected optimized designs were then evaluated under full-load conditions.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3