Two Constructal Routes to Minimal Heat Flow Resistance via Greater Internal Complexity

Author:

Bejan A.1,Dan N.1

Affiliation:

1. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300

Abstract

This paper shows that the geometry of the heat flow path between a volume and one point can be optimized in two fundamentally different ways. In the “growth” method of the original constructal theory the structure is optimized starting from the smallest volume element of fixed size. Growth, or optimal numbers of constituents assembled into larger volumes, is one route to resistance minimization. In the “design” method the overall volume is fixed, and the designer works “inward” by optimizing the internal features of the heat flow path. The design method is new. It is shown analytically that the two methods produce comparable geometric results in which the high-conductivity channels form constructal tree networks, and where the low-conductivity material fills the interstices. For simplicity, it is assumed that the high-conductivity channels and their tributaries make 90-deg angles. In both approaches, the overall resistance decreases as the internal complexity of the conductive composite increases. In the growth method the number of constituents in each assembly can be optimized. In the design method, some of the constituent numbers cannot be optimized: these numbers assume the roles of weak parameters. The growth method is the simplest, and provides a useful approximation of the design and performance that can be achieved using the design method. Numerical solutions of the volume-to-point optimization problem confirm the results obtained analytically, and show that the geometric features of the optimal design are robust.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Design of Novel Coolant Passages for Cooling a Square Substrate by Single Stream;Journal of Heat Transfer;2021-06-15

2. Constructal Design of the Assembly of Fins;Tree-Shaped Fluid Flow and Heat Transfer;2018

3. Fluid Flow Systems;The Nature of Motive Force;2014

4. Constructal entransy dissipation rate minimization for tree-shaped assembly of fins;International Journal of Heat and Mass Transfer;2013-12

5. Behavior of Thermally Radiating Tree-like Fins;Journal of Heat Transfer;2013-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3