Spatial Iterative Learning Control for Multi-material Three-Dimensional Structures

Author:

Afkhami Zahra1,Pannier Christopher1,Aarnoudse Leontine2,Hoelzle David3,Barton Kira1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109

2. Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 600 MB, Netherlands

3. Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210

Abstract

Abstract Iterative learning control (ILC) is a powerful technique to regulate repetitive systems. Additive manufacturing falls into this category by nature of its repetitive action in building three-dimensional structures in a layer-by-layer manner. In literature, spatial ILC (SILC) has been used in conjunction with additive processes to regulate single-layer structures with only one class of material. However, SILC has the unexplored potential to regulate additive manufacturing structures with multiple build materials in a three-dimensional fashion. Estimating the appropriate feedforward signal in these structures can be challenging due to iteration varying initial conditions, system parameters, and surface interaction dynamics in different layers of multi-material structures. In this paper, SILC is used as a recursive control strategy to iteratively construct the feedforward signal to improve part quality of 3D structures that consist of at least two materials in a layer-by-layer manner. The system dynamics are approximated by discrete 2D spatial convolution using kernels that incorporate in-layer and layer-to-layer variations. We leverage the existing SILC models in literature and extend them to account for the iteration varying uncertainties in the plant model to capture a more reliable representation of the multi-material additive process. The feasibility of the proposed diagonal framework was demonstrated using simulation results of an electrohydrodynamic jet printing (e-jet) printing process.

Funder

National Science Foundation

Publisher

ASME International

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3