Enhanced Pose Adjustment System for Wing-Box Assembly in Large Aircraft Manufacturing

Author:

Mei Biao1,Yang Yongtai1,Zhu Weidong2

Affiliation:

1. Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou 362200, China

2. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Abstract Strict quality requirements in aircraft manufacturing demand high-accuracy pose adjustment systems. However, the pose alignment process of a large complex structure is also affected by thermal and gravity deformations to a great extent. Even though the pose adjustment system passes accuracy verification, the pose of the large complex structure remains challenging to smoothly and efficiently converge to the desired pose. To solve this problem, we developed a pose adjustment system enhanced by integrating physical simulation for the wing-box assembly of a large aircraft. First, the development of the pose adjustment system, which is the base of the digital pose alignment of a large aircraft’s outer wing panel, is demonstrated. Then, pose alignment principles of duplex and multiple assembly objects based on the best-fit strategy are successively explored. After that, contribution analysis is conducted for nonideal pose alignment. Immediately following, influences of thermal and gravity deformations simultaneously coexisting for the pose alignment are discussed. Finally, a physical simulation-assisted pose alignment method is developed considering multisource errors, which uses the finite element analysis to integrate temperature fluctuation and gravity field effects. Compared with a conventional digital pose adjustment system driven by the classical best-fit, deviations of the key characteristic points significantly decreased despite the impacts of thermal and gravity deformations. The enhanced pose adjustment system has been applied to large aircraft wing-box assembly. It provides an improved understanding of the pose alignment of large-scale complex structures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3