Two-Dimensional In-Plane Elastic Waves in Curved-Tapered Square Lattice Frame Structure

Author:

Prasad Rajan1,Baxy Ajinkya2,Banerjee Arnab2

Affiliation:

1. School of Mechanical Engineering, SASTRA Deemed University, Thanjavur 613401, India

2. Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India

Abstract

Abstract This work proposes a unique configuration of a two-dimensional metamaterial lattice grid comprising curved and tapered beams. The propagation of elastic waves in the structure is analyzed using the dynamic stiffness matrix (DSM) approach and the Floquet–Bloch theorem. The DSM for the unit cell is formulated under the extensional theory of curved beam, considering the effects of shear and rotary inertia. The study considers two types of variable rectangular cross sections, viz. single taper and double taper along the length of the beam. Further, the effect of curvature and taper on the wave propagation is analyzed through the band diagram along the irreducible Brillouin zone. It is shown that a complete band gap, i.e., attenuation band in all the directions of wave propagation, in a homogeneous structure can be tailored with a suitable combination of curvature and taper. Generation of the complete bandgap is hinged upon the coupling of the axial and transverse components of the lattice grid. This coupling emerges due to the presence of the curvature and is further enhanced due to tapering. The double taper cross section is shown to have wider attenuation characteristics than single taper cross sections. Specifically, 83.36% and 63% normalized complete bandwidth is achieved for the double and single taper cross section for a homogeneous metamaterial, respectively. Additional characteristics of the proposed metamaterial in the time and frequency domain of the finite structure, vibration attenuation, wave localization in the equivalent finite structure are also studied.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3