Reduced Order Modeling Based on Complex Nonlinear Modal Analysis and Its Application to Bladed Disks With Shroud Contact

Author:

Krack Malte1,Panning-von Scheidt Lars,Wallaschek Jörg2,Siewert Christian3,Hartung Andreas4

Affiliation:

1. e-mail:

2. Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, Hannover 30167, Germany

3. Siemens AG - Energy Sector, Steam Turbine Engineering E F PR SU R&D BL2, Mülheim an der Ruhr 45478, Germany

4. MTU Aero Engines GmbH, München 80995, Germany

Abstract

The design of bladed disks with contact interfaces typically requires analyses of the resonant forced response and flutter-induced limit cycle oscillations. The steady-state vibration behavior can efficiently be calculated using the multiharmonic balance method. The dimension of the arising algebraic systems of equations is essentially proportional to the number of harmonics and the number of degrees of freedom (DOFs) retained in the model. Extensive parametric studies necessary, e.g., for robust design optimization are often not possible in practice due to the resulting computational effort. In this paper, a two-step nonlinear reduced order modeling approach is proposed. First, the autonomous nonlinear system is analyzed using the generalized Fourier-Galerkin method. In order to efficiently study localized nonlinearities in large-scale systems, an exact condensation approach as well as analytically calculated gradients are employed. Moreover, a continuation method is employed in order to predict nonlinear modal interactions. Modal properties such as eigenfrequency and modal damping are directly calculated with respect to the kinetic energy in the system. In a second step, a reduced order model is built based on the single nonlinear resonant mode theory. It is shown that linear damping and harmonic forcing can be superimposed. Moreover, similarity properties can be exploited to vary normal preload or gap values in contact interfaces. Thus, a large parameter space can be covered without the need for recomputation of nonlinear modal properties. The computational effort for evaluating the reduced order model is almost negligible since it contains a single DOF only, independent of the original system. The methodology is applied to both a simplified and a large-scale model of a bladed disk with shroud contact interfaces. Forced response functions, backbone curves for varying normal preload, and excitation level as well as flutter-induced limit cycle oscillations are analyzed and compared to conventional methods. The limits of the proposed methodology are indicated and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3