Computer Simulation of Rapid Granular Flow Through an Orifice

Author:

Ahn Hojin1

Affiliation:

1. Department of Mechanical Engineering, Yeditepe University, 34755 Kayışdağı/Istanbul, Turkey

Abstract

Rapid granular flow through an orifice (nozzle-shaped flow restrictor) located at the bottom of a vertical tube has been studied using three-dimensional direct computer simulation with the purpose of investigating (1) characteristics of rapid granular flows through the flow restrictor, (2) the choking condition of rapid flow at the orifice and thus conditions at which the maximum discharge rate takes place for the given orifice, and (3) a functional relationship between the discharge rate and flow quantities such as granular temperature and solid fraction. In the present simulation, where the frictional hard-sphere collision operator was employed, it was possible to obtain both rapid and slow (choked) flows through the orifice by controlling the number of particles in the system. The results show that the profile of granular temperature in the vicinity of the orifice plays an important role in determining the choking condition at the orifice. Flow appears to be choked when an adverse granular conduction occurs locally at the orifice in the direction opposite to the mean flow. On the other hand, flow is not choked when the fluctuation energy is conducted in the mean flow direction near the orifice. When flow is not choked, the discharge rate through the orifice increases with increasing solid fraction or normal stress. Once the flow becomes choked, however, the discharge rate decreases as the solid fraction or normal stress increases. Also for inelastic, rough particles, the discharge rate is found to be proportional to the granular temperature to the power of 1.5 and inversely proportional to the gravitational acceleration and the tube length.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relationship between mass discharge rate and granular temperature of silo flow with variance of outlets;Particuology;2022-04

2. Measurement of granular temperature and velocity profile of granular flow in silos;Powder Technology;2021-11

3. CFD-DEM and PR-DNS studies of low-temperature densely packed beds;International Journal of Heat and Mass Transfer;2020-10

4. Bibliography;Gas-Particle and Granular Flow Systems;2020

5. Introduction to two-phase flow;Gas-Particle and Granular Flow Systems;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3