On Shaping With Motion

Author:

Ilies¸ Horea T.1,Shapiro Vadim1

Affiliation:

1. Spatial Automation Laboratory, Department of Mechanical Engineering, 1513 University Avenue, University of Wisconsin-Madison, WI 53706

Abstract

Mechanical parts are modeled as (predominantly rigid) solid shapes that may move in space in order to function, be manufactured (for example, machine or be machined), and be assembled or disassembled. While it is clear that such mechanical shapes are greatly influenced by collision, interference, containment, and contact constraints through prescribed motions, the motion itself is usually not part of these shape models. This in turn leads to proliferation of computational methods for modeling and analysis of various motion-related constraints. We show that all motion-related constraints can be formulated and applied within the same computational framework that treats motion as an integral part of the model. Our approach relies on two computational utilities. The first one is the unsweep operation which, given an arbitrary n-dimensional subset of Euclidean space E and a general motion M, returns the largest subset of E that remains inside E under M. The second modeling utility is a disjoint decomposition of space induced by the operations of unsweep and the standard set operations. The proposed approach subsumes and unifies the traditional sweep-based modeling of moving parts, and provides improved computational support for mechanical shape design. [S1050-0472(00)02404-1]

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference52 articles.

1. Requicha, A. , 1980, “Representations for rigid solids: Theory, Methods and Systems,” ACM Computing Surveys, 12, No. 4, pp. 437–463.

2. Hui, K., 1994, “Solid Modelling with Sweep-CSG Representation,” Proc. CSG 94 Set Theoretic Solid Modelling; Techniques and Applications, pp. 119–131.

3. Lee, Y., and Chang, T., 1996, “Application of Convex Hull For Tool Interference Avoidance in 5-Axis CNC Machining,” in Proc. 1996 ASME Design Technical Conferences.

4. Wang, W., and Wang, K., 1986, “Geometric Modeling for Swept Volume of Moving Solids,” IEEE Comput. Graphics Appl., 6, No. 12, pp. 8–17.

5. Donald, B., 1985, “On Motion Planning with Six Degrees of Freedom: Solving the Intersection Problems in Configuration Space,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 536–541.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3